toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) AN Ruchai; VI Kober; KA Dorofeev; VN Karnaukhov; Mikhail Mozerov edit  url
doi  openurl
  Title Classification of breast abnormalities using a deep convolutional neural network and transfer learning Type Journal Article
  Year 2021 Publication Journal of Communications Technology and Electronics Abbreviated Journal  
  Volume 66 Issue 6 Pages 778–783  
  Keywords  
  Abstract A new algorithm for classification of breast pathologies in digital mammography using a convolutional neural network and transfer learning is proposed. The following pretrained neural networks were chosen: MobileNetV2, InceptionResNetV2, Xception, and ResNetV2. All mammographic images were pre-processed to improve classification reliability. Transfer training was carried out using additional data augmentation and fine-tuning. The performance of the proposed algorithm for classification of breast pathologies in terms of accuracy on real data is discussed and compared with that of state-of-the-art algorithms on the available MIAS database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP;;ISE Approved no  
  Call Number Admin @ si @ RKD2022 Serial 3680  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: